

Magmatic and structural evolution of the Peruvian lithosphere: Implications for favourable sites for gold-rich mineral systems through time

Dr. Daniel Wiemer

Centre for Exploration Targeting University of Western Australia

> Huaguruncho, 5723 m Huachon Gold prospect area Eastern Cordillera, Central Peru

Collaborators: Steffen Hagemann, Tony Kemp, Jon Hronsky, Nick Hayward, Graham Begg, Nico Thébaud, Laure Martin, Trevor Ireland, Carlos Villanes **Acknowledgements:** Diego Sologuren, Fausto Cueva

CET project: Wiemer/Hagemann

Fully funded by: Compania Minera Poderosa

Present-Day – Andean slab geometry

Peru Flat-Slab

- Gap in recent volcanic activity
- Most pronounced between 80-120 km depth (i.e., lithospheric mantle?)

Observation:

- Slab 2.0 model = "smooth"
- Some anomalous EQ loci transect at perpendicular or oblique strike directions

Previous model for Peru flat-slab - Deconstructing the Myth of the Inca Plateau

Problems:

1) Marquesas plateau

- Younger (<6 Ma)
 - Inconsistent spatial age trend (e.g., Guillou et al., 2014)
- Formation associated with pre-existing 'leaky fracture zone' (e.g., Smith, 2003)

2) General consideration

 Size/buoyancy not sufficient for flat-slab development; better explained by wedge dynamics, viscosity, water, or rapid convergence (e.g., Cross & Pilger, 1982; Skinner & Clayton, 2011)
 → No Inca Plateau

How to explain the Peru flat slab?

Wiemer, compiled from: Gutscher et al., 1999; Hampel, 2002; Lonsdale, 2005; Rosenbaum et al., 2005; Ray et al., 2012; Hochmuth & Gohl, 2017

Slab segmentation – Slab tear

Caldas Tear > accommodates slab steepening and new arc (Vargas & Mann, 2013; Wagner et al., 2017)

Sumaco Tear trapdoor style slab tearing

(Rosenbaum et al., 2018)

Flat-slab segments:

- **Rapid convergence**
- Increased rollback velocity
- Young low-density ٠ oceanic crust
- Sites of deflection; shape ٠ of continent or incoming indenter
- \rightarrow Promoted by pre-existing architecture/lithosphere anisotropy

North Andes Escape Tectonics

- → NW-margin of South American continental/cratonic nucleus acts as "rigid indenter"
- \rightarrow Increased velocity "escape" tectonics
- \rightarrow Major dextral displacements along structural corridors that align with sub-Andean basin boundaries

North Andes Escape Tectonics

- → NW-margin of South American continental/cratonic nucleus acts as "rigid indenter"
- → Increased velocity "escape" tectonics

~70 Ma reconstruction

'Greater

Panama

500 km

Kennan & Pindell, 2009

 \rightarrow Major dextral di

CARIBBEAN PL

Piñon

What about the Peruvian lithosphere?

When did the escape tectonics initiate?

What are the implications for slab geometry, strain partitioning, and favorable sites for gold?

Huancabamba faults not vet active? 2003; review in Wiemer et al., 2023

sin boundaries

BaB

AmB

Sub-Andean basins

BaB = Barinas Apure HuB = Huallaga

MdB = Madre de Dios

AmB = Amacuro

LaB = Llanos MaB = Maranor

PuB = Putumayo

SaB = Santiago ScB = Santa Cruz

SoB = Solimoes UcB = Ucayali

South

SoB

Maracaibo

LaB

aldas

ear

MaB

SaB

sub-plate

- Pre-Carboniferous basement inheritance, controlling gold vein system geometry within dilational jog
 Hanging-wall of
- Hanging-wall of cryptic Famatinian suture

NW strike direction of basement structural grain, parallel to proposed suture; oblique to superimposed NNW - "Andean" strike direction

Northern Peru – Geochronology

Pataz batholith

Wiemer et al., 2022; 2023

>370 to 310 Ma magmatic arc Gold vein system formation at 332 Ma during tectonic switch

Basement

Vijus Arc, SHRIMP U-Pb zircon: magmatic* • recrystallized* n magmatic • detrital max. deposition *Young Marañon Complex*, SHRIMP U-Pb zircon: • max. detrital* • metamorphic rim* • LAICPMS max. detrital *Sitabamba*, U-Pb zircon: n LAICPMS, max. inherited = TIMS, magmatic • LAICPMS U-Pb titanite *TUM*: • Sm-Nd Cr-WR, formation • Sm-Nd Grt-WR, peak metamorphism/fluid = K-Ar Amp, metamorphism

Neoproterozoic Tomac Ophiolite ~460 Ma max deposition of marine sediments ~480-460 Ma arc magmatism

450-440 Ma metamorphism and D2 deformation

- \rightarrow M/HP HT collisional paired metamorphic belt
- \rightarrow Accretion of Paracas micro-terrane

Wiemer et al., 2022; 2023

- → 2-stage vein system development during tectonic switch from transpression to transtension at ca.
 332 Ma
- → Strike-slip control;
 block (and vein)
 rotations

Central Peru

marine metasediments .

Dextral synthetic R faults/shear zones cause regional-scale drag folds within basement (up to 90 degree rotation; similar to Pataz basement)

> Huanuco Ophiolite metaperidotiteserpentinite melange

> > Note: map still in development

2-A Huanuco area North central higher grad 'naragneis nigher grade =S1; incipient umbent F2 shear folds Foliation traces; Acomayo simplified 30 mnz-gr Huánycó Linda nappe Higueras 51 49 ... 50 Monte Huasi

Central Peru

- > Au-rich Qz-sulphide fault-fill veins
- Late-stage mafic dikes and extension veins indicate switch to NW-extension within NE-corridor (same as in Pataz)

Paracas suture displacement along synthetic dextral R faults

Free-air Gravimetry

Lemenkova, 2019

NE-trending transtensional corridors

NE trending sub-basin orientation

Triassic-Jurassic basins (Mitu, Pucara formations); isopachs (Rosas et al., 2007)

Punctuated Triassic alkaline granite intrusions along sub-basin margins (Miskovic et al., 2009)

Relative timing:

- Dextral R responsible for Pataz dilational jog since mid-Carboniferous
- Structures controlling sub-basin geometry established at least during the Early Triassic
- Pre-Carboniferous basement rotations of up to 90° and associated dextral off-sets in displacements not observed to affect Cenozoic thin-skinned thrust nappes

Consistent global Plate Kinematic Framework

(e.g., Young et al., 2018)

NE-transtensional corridors = T-fractures, induced by strike-slip dynamics

>350 Myr of Au-rich deposit formation and architecture development

Mid-Late Paleozoic

Early-Mid Mesozoic

Cenozoic

Conclusions

- Peruvian lithosphere primary kinematic framework result of long-lived strike-slip dynamics due to oblique subduction towards edge of continental indenter (Gondwana/Amazonia)
- > Initiation of escape tectonics during the Carboniferous
- Increased convergence velocity in northern Peru = increased flat slab; possibly extended metasomatized SCLM region
- Establishment of NE-trending T-fracture corridors and transtensional sub-basins
- Preferred sites of ore-fertile upper mantle lithosphere-derived (potassic, hydrous) mafic intrusions and dike swarms
- > Preferred sites of Au-rich mineral deposits with formation ages spanning >400 Ma